

Tema 5b. Conservacion p. Colisiones

- **1.** Un núcleo 238 U en reposo se desintegra emitiendo una partícula alfa (4 He) de masa m=4 uma y dejando un núcleo residual de 234 Th. La energía disponible en el proceso es 4.18 MeV. Encontrar i) la energía cinética de la partícula alfa y del núcleo residual; ii) el momento lineal de la partícula alfa y del núcleo residual. Datos: 1 eV=1,602×10⁻¹⁹ J, 1 uma=1.6604×10⁻²⁷ kg. **Resp: i)** E_{c, α}= **4.11 MeV,** E_{c,Th}= **0.07 MeV; ii)** p_{α} = -9.35×10⁻²⁰ kg m/s.
- **2.** Un proyectil estalla en tres fragmentos de masas $m_1=2$ Kg, $m_2=1$ Kg y $m_3=3$ Kg de acuerdo con la figura. Los módulos de las respectivas velocidades son $v_1=1$ m/s, $v_2=2$ m/s y $v_3=4$ m/s. ¿Cuál es el vector velocidad justo antes de la explosión? **Resp:** $\vec{v}_i = \left[\frac{2+\sqrt{2}+6\sqrt{3}}{6}\,\vec{i} + \frac{6-\sqrt{2}}{6}\,\vec{j}\right]$ ms $^{-1}$.

- **3.** Un bloque de masa 1 kg se desliza hacia abajo por un plano inclinado de 3.2 kg de masa y 30° de inclinación. Si el plano inclinado está fijo y el bloque desliza sin rozamiento, encontrar la aceleración del centro de masas del sistema formado por el bloque más el plano inclinado. **Resp: 1.16 m/s².**
- **4.** Un niño, de 50 kg, lanza una pelota de 3.3 kg de masa a una muchacha de 48 kg que está calzada con patines e inicialmente en reposo. Al agarrar la pelota, la muchacha comienza a moverse a 0.32 m/s. ¿Cuál era el módulo de la velocidad de la pelota cuando la agarró? **Resp: 4.97 m/s.**
- **5.** (Examen Feb2011) La partícula A de la figura, de masa 1 kg y velocidad $2 ms^{-1}$ choca con la partícula B de la misma masa y que se encuentra inicialmente en reposo. Ambas partículas se mueven en una dimensión y sin rozamiento. El punto máximo de la rampa se encuentra a una altura $h_1 = 10$ cm y el muelle a una altura $h_2 = 5$ cm.

- a) Calcular la velocidad de la partícula B inmediatamente después del choque, suponiendo que éste es elástico.
- b) Calcular la energía cinética, potencial y total de la partícula B en los siguientes puntos: i) inmediatamente después del choque, ii) cuando la partícula está en el punto máximo de la rampa y iii) cuando el muelle está completamente comprimido (en este último punto calcular además tanto la energía potencial elástica como la potencial gravitatoria).
- c) Calcular la velocidad máxima que tiene que tener la partícula A para que la B no alcance el muelle.

(Tómese $g = 10 \text{ m/s}^2$ a lo largo de todo el problema y considérese que las partículas son puntuales).

Resp: a)
$$v_B = 2$$
 m/s; b) i) $E_C = 2$ J, $U_{gravit} = 0$ J; $E_{total} = 2$ J; ii) $E_C = 1$ J; $U_{gravit} = 1$ J; $E_{total} = 2$ J; iii) $E_C = 0$ J, $U_{gravit} = 0.5$ J; $U_{elast} = 1.5$ J; $E_{total} = 2$ J; c) $v_A \le 1.41$ m/s

6. Un chico A, de masa 80 kg, está patinando sobre una pista de hielo con una v=3m/s cuando choca contra otro chico B, de masa 30 kg, que se mueve en sentido opuesto a 5 m/s. Después de la colisión ambos chicos quedan acoplados. Determinar i) la velocidad final de ambos chicos; ii) la velocidad del centro de masas antes y después del choque; iii) si el tiempo de impacto es 0.1 s, ¿cuál es la fuerza promedio ejercida por el chico B sobre el chico A? (Al cabo de 0.1 s los chicos se siguen moviendo juntos pero se considera que ya no existe interacción entre ellos). **Resp: i) 0.82 m/s; ii) 0.82 m/s; iii) 1746 N.**